
March 10, 2009 / Vol. 7, No. 3 / CHINESE OPTICS LETTERS 201

Spectral feature matching based on partial least squares

Weidong Yan (òòò���ÀÀÀ)1∗, Zheng Tian (XXX ���)1,2, Lulu Pan (���åååååå)1, and Mingtao Ding (¶¶¶²²²777)1

1School of Science, Northwestern Polytechnical University, Xi’an 710072
2State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Applications,

Chinese Academy of Sciences, Beijing 100101
∗E-mail: weidongyan@qq.com

Received September 16, 2008

We investigate the spectral approaches to the problem of point pattern matching, and present a spectral
feature descriptors based on partial least square (PLS). Given keypoints of two images, we define the
position similarity matrices respectively, and extract the spectral features from the matrices by PLS, which
indicate geometric distribution and inner relationships of the keypoints. Then the keypoints matching is
done by bipartite graph matching. The experiments on both synthetic and real-world data corroborate
the robustness and invariance of the algorithm.
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Image registration is a fundamental task in image pro-
cessing used to match two or more images which are taken
at different time from different sensors or different view-
points, so that differences can be detected. The most
difficult part of a registration process is the determi-
nation of the correspondence of keypoints between the
images to be registered. If some correspondences are in-
correct, they will produce an incorrect transformation
function, which could yield totally wrong results. So a
highly robust point matching algorithm is needed.

Image registration methods can be generally orga-
nized in area-based and feature-based methods[1]. Area-
based methods deal with the images without attempt-
ing to detect salient features, and adopt optimization
algorithms[2,3]. These methods have some limitations,
which can be affected by the intensity distribution.
Feature-based matching which is particularly suited to
multi-source image registration consists of three stages.
In the first stage, features in the image are extracted,
such as keypoints, lines, and patches. In the second stage,
keypoints in the reference image are corresponded with
keypoints in the sensed image. In the last stage, a spatial
mapping, usually an affine transformation, is determined
using these matched keypoints based on least square re-
gression or similar techniques. However, in most cases,
the extraction and representation of the relationship it-
self are difficult problems. The crucial objective[4] of all
feature-based matching methods is to have discrimina-
tive and robust feature descriptors that are invariant to
all assumed differences between the images.

Keypoints are the simplest form of features, which
are represented basically by the point locations. How-
ever, the resulting point matching problem can be quite
difficult because of various factors like noise. Keypoints
can be matched by considering either the radiometric
properties of the surrounding pixels, or the geometric
distribution of the whole set of keypoints across the
whole image[5]. Spectral graph theory is a term ap-
plied to a family of techniques that aim to character-
ize the global structural properties of graphs using the
eigenvalues and eigenvectors of similarity matrices[6]. So

the spectral graph can indicate geometric distribution
of keypoints. In the computer vision literatures, there
have been a number of attempts to use spectral proper-
ties for graph-matching[7−9]. Scott et al. used a Gaus-
sian weighting function to build an inter-image similarity
matrix between feature points in different images being
matched and then performed singular value decomposi-
tion (SVD) on the similarity matrix in order to get cor-
respondences from the similarity matrix’s singular values
and vectors[7]. This method fails when the rotation or
scaling between the images is too large. To overcome
this problem, Shapiro et al.

[8] constructed intra-image
similarity matrices for the individual points-sets being
matched with an aim to capture the relational image
structure[8]. The eigenvectors of the individual similarity
matrices were used to match. This method can be viewed
as projecting the individual point-sets into an eigenspace,
and seeking matches by looking for the closest point cor-
respondence. Wang et al. investigated the performance
of kernel principal component analysis (PCA) with a
polynomial kernel function for solving the point corre-
spondence problem and discussed the relationship with
Shapiro’s correspondence method[9]. Such approaches
characterize the graphs by their dominant eigenvectors.
However, these eigenvectors are computed independently
for each graph and thus often do not capture co-salient
structures of the graphs. While the partial least square
(PLS) approach helps to extract representations from two
images which contain relevant information for the match-
ing of the particular pair of images.

In this letter, we present a method of spectral feature
matching based on PLS. The spectral features are con-
structed with information of position similarity matri-
ces, using PLS components, and invariant to translation,
scale, and rotation, and very suitable for feature-based
matching.

The PLS method initially developed by Wold et al.
[10]

has a tremendous success in chemometrics and chemi-
cal industries for static data analysis. It integrates the
PCA and canonical correlation analysis (CCA) together
naturally and is convenient for the analysis of the multi-

1671-7694/2009/030201-05 c© 2009 Chinese Optics Letters



202 CHINESE OPTICS LETTERS / Vol. 7, No. 3 / March 10, 2009

dimensional complexity system. In its general form, PLS
creates components by using the existing correlations be-
tween different sets of variance while also keeping most
of the variance of both sets. Before detailing the algo-
rithm, we provide some of the formal ingredients of the
method.

Consider a general setting of the PLS algorithm to
model the relation between two data sets. Let x =
(x1, · · · , xN ) denote an N -dimensional vector of vari-
ables in the first block of data, and similarly let y =
(y1, · · · , yM ) denote a vector of variables from the second
set. Observing n data samples from each block of vari-
ables, PLS decomposes X = (xij)n×N and Y = (yij)n×N

into the form

X = TPT + F,

Y = UQT + G,

where T and U are n×r matrices of the extracted r com-
ponents, the N × r matrices P and Q represent matrices
of projections, and the n × N matrices F and Q are the
matrices of residuals. The PLS method, in which the
classical form is based on the nonlinear iterative partial
least square (NIPALS) algorithm, finds projection axes
w and c such that[10]

max S = tTu=(Xw)T(Y c) = wTXTY c,

s.t.

{

wTw = ‖w‖
2

= 1

cTc = ‖c‖
2

= 1
. (1)

The solution to this optimization problem is given by the
following eigenvalue problem[11]:

XTY Y TXw = λw,

where λ is the eigenvalue associated with w. The com-
ponents of X are then given as t = Xw.

Similarly, the extraction of components of Y is given
as

XXTY Y Tt = λt, (2)

u = Y Y Tt. (3)

Now, we select the keypoint sets on the reference
image and the sensed image respectively, and denote
X = (x1, x2, · · · , xn) and Y = (y1, y2, · · · , yn). In this
letter, the keypoints in each data-set are in the form of
xi = (x1

i , x
2
i ) and yi = (y1

i , y2
i ), respectively. Our aim is

to establish a one-to-one point correspondence between
the two data-sets.

Using the keypoint sets, we construct the position simi-
larity matrices by Gaussian kernel function, (Sx)n×n and
(Sy)n×n,

(Sx)ij = exp(−
d(xi, xj)

2

σ2
x

),

and (Sy)ij = exp(−
d(yi, yj)

2

σ2
y

),

where d(xi, xj) is the Euclidean distance between the
keypoints xi and xj , and σx, σy are adjustable pa-
rameters. Now every keypoint corresponds to an n-
dimensional feature vector, xi → (Sx)i·, yj → (Sy)j·.
The mapping of the original two-dimensional (2D) data
to a higher dimensional space is completed and thus the
structural information can be captured from the feature
vectors[8].

Under the criterion (1), the number of components
is rank(ST

x SyST
y Sx) (that is the number of non-zero

eigenvalues of matrix ST
x SyS

T
y Sx) pairs at most. r

(≤ rank(ST
x SyST

y Sx)) pairs of components are com-
posed of vectors which are selected from the eigenvec-
tors corresponding to the first r maximum eigenvalues of
eigenequations

SxST
x SyST

y T = λ2T, (4)

SyST
y SxST

x U = λ2U, (5)

where T = [t1, · · · , tr], U = [u1, · · · , ur].
Now we give the proof of the above theorem. Using the

Lagrange multiplier method[12] to transform Eq. (1), we
get

L(W, C) = WTST
x SyC −

λ1

2
(WTW − 1) −

λ2

2
(CTC − 1),

where λ1 and λ2 are Lagrange multipliers. Let

∂L(W, C)

∂W
= ST

x SyC − λ1W = 0,

∂L(W, C)

∂C
= ST

y SxW − λ2C = 0,

then,

WTST
x SyC = λ1W

TW = λ1,

CTST
y SxW = λ2C

TC = λ2.

Since (ST
y Sx)T = ST

x Sy, we have

λ1 = λT
1 = (WTST

x SyC)T = CTST
y SxW = λ2.

Let λ1 = λ2 = λ, we can infer that to obtain the maxi-
mum value of λ is the same as to maximize the criterion
(1).

Then r pairs of projection axes W , C can be inferred
via

ST
x SyST

y SxW = λ2W,

ST
y SxST

x SyC = λ2C.

Multiplying both side of Eq. (4) by Sx, then the compo-
nents of Sx are given by T = SxW , that is SxST

x SyS
T
y T =

λ2T . Since both ST
x SyS

T
y Sx and ST

y SxST
x Sy are symmet-

ric matrices, and rank(ST
x SyST

y Sx) = rank(ST
y SxST

x Sy),
the two eigenequations (4) and (5) have the same non-
zero eigenvalues.

In the same way, SyST
y SxST

x U = λ2U .
Now the keypoint xi in the reference image and

yj in the sensed image can be represented by PLS
spectral features (T )i = [ti1, ti2, · · · , tir ] and (U)j =
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[uj1, uj2, · · · , ujr] in the r-dimensional eigenspace
spanned by T and U respectively. Thus if the arbi-
trary numbering of two features in an image is changed,
their feature vectors simply change positions in T (or
U), and the matching of keypoints can be converted to
the matching of PLS spectral features. It is known from
geometry that the Euclidean distance is invariant to the
similarity transformation[12]. Hence, the spectral fea-
tures have invariance.

Various methods have been proposed to deal with the
keypoint matching problem[13,14]. As a fundamental
problem in image registration, graph matching has a
variety of applications in the field of computer vision.
In graph matching, keypoints are modeled as graphs
and feature matching amounts to find a correspondence
between the nodes of different graphs. In this letter, bi-
partite matching methods are applied in feature match-
ing. We firstly extract keypoints from the reference and
sensed images, and then compute the spectral feature
vectors (T and U) for the keypoints, forming the ver-
tices for a bipartite graph. Each vertex is connected
to all the vertices on the opposite side. The similarity
measures between these two sets of spectral features are
summarized in the association matrix. We then apply
the Hungarian algorithm to find the optimal matching
for the bipartite graph.

To make the algorithm more robust, the mismatching
keypoints can be eliminated by the continuity constraint
(close neighbors in the reference image must be mapped
to close neighbors in the sensed image). So we can exam-
ine the correspondences of the neighbors of the matched
keypoints to eliminate the mismatching.

We investigate the performance of the method of spec-
tral feature matching based on PLS. We use it to solve
a 2D rigid mapping (rotation, translation, and scale).
Three experiments were performed. In the experiment 1,
we compared the matching performance of the PLS-based
approach described above and SVD-based approach[7],
and showed the robustness of the PLS-based approach.
In the experiment 2, we verified the invariance of the

spectral features on synthetic and optical images. Fi-
nally, in the experiment 3, we tested the method on a
synthetic aperture radar (SAR) image.

Firstly, we investigated the effect of controlled affine
skew of the point sets. The reference point set was ran-
domly generated and then transformed by parameters to
get the sensed data set. Figure 1 shows the matching
results of SVD-based matching and PLS-based feature
matching. Tables 1 and 2 show the accuracy results of
PLS-based feature matching and SVD-based matching
for four different transform models. In Fig. 1 and the
tables, we define the known translational transforma-
tions in x-axis and y-axis as dx and dy, the rotational
transformation as θ, and the scale transformation as s.
From the results, it is obvious that our technique per-
mits highly accurate matching results, especially when
the parameter θ is large. The SVD-based algorithm does
not cope with large rotation in the image. Small root-
mean-square (RMS) errors have been observed in most
cases of different transform models.

Fig. 1. (a) Reference data set and sensed data set without out-
liers; (b) SVD-based matching result; (c) PLS-based feature
matching result. In (b) and (c), the circles are the reference
data, the crosses are the sensed data. dx = 0.1, dy = 0.2,
θ = 20◦, s = 1.1.

Table 1. Accuracy of PLS-Based Feature Matching Using 50 Point-Sets

Ground Truth Matching Results

dx dy θ (rad) s Data Sets dx dy θ (rad) s

0.4 0.5 0.1745 1.1 50 0.4 0.5 0.1745 1.1

0.1 0.2 0.1745 1.2 50 0.1 0.2 0.1745 1.2

0.1 0.2 0.2618 1.1 50 0.1 0.2 0.2618 1.1

0.1 0.2 0.5236 1.1 50 0.1 0.2 0.5236 1.1

RMS Error 0 0 0 0

Table 2. Accuracy of SVD-Based Feature Matching Using 50 Point-Sets

Ground Truth Matching Results

dx dy θ (rad) s Data Sets dx dy θ (rad) s

0.4 0.5 0.1745 1.1 50 0.4003 0.4999 0.1746 1.0992

0.1 0.2 0.1745 1.2 50 0.1035 0.2111 0.1680 1.1930

0.1 0.2 0.2618 1.1 50 0.1237 0.2128 0.2824 1.0845

0.1 0.2 0.5236 1.1 50 0.4307 0.2698 0.9606 1.0567

RMS Error 0.1658 0.0361 0.2188 0.0233
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Secondly, we focused on the performance of the algo-
rithms when the data were under affine transformations
and contained uncertainties such as outliers and noise.
For this purpose, we added noise to the sensed data. The
reference data set was the same as that in the experiment
1, and 5 outliers were added to the sensed data set. The
results are shown in Fig. 2. The PLS-based algorithm
presents a strong ability to eliminate incorrect match-
ing. And the total computation time elapsed during the
matching process is less than 1 s for 50 points matching.

To provide more quantitative evaluations, we also
tested the algorithm on synthetic and optical images.
We matched images from a gesture of a hand. The key-
points in hand images are points of maximum curvature
on the outline of the hand. Figure 3 shows the final
configuration of correspondence matches obtained using
our method. We also matched optical images from a
house. There are rotation and scaling distortions. Fig-
ure 4 shows the final configuration of correspondence
matches obtained using our method. From these results,

Fig. 2. (a) Reference data set and sensed data set with out-
liers; (b) the matching results by our implementation found
between the two data sets, the circles are the reference data,
the crosses are the sensed data.

Fig. 3. Point matching results on the synthetic images. (a)
Correspondences between the hand-roatation and (b) regis-
tration result; (c) correspondences between the hand-scaling
and (d) registration result; (e) correspondences between the
houses and (f) registration result.

Fig. 4. Synthetic experiment (rotation). (a) Correspondences
of keypoints between the images and (b) registration result.

Fig. 5. Deyang area. (a) Unregistered image before the
earthquake (Dec. 19, 2007); (b) unregistered image after the
earthquake (May 14, 2008).

Fig. 6. SAR experiment. (a) Correspondences of keypoints
between the images; (b) registration result computed with
the proposed approach.

we can see that the spectral descriptors are invariant to
rotation and scaling.

To test our algorithm on a real-world situation, we ap-
plied it to a SAR image registration problem. We took
two images from the same area (Deyang) with 15 key-
points already extracted. Then we tried to match using
our implementation. Figure 5 shows two SAR images
taken from the city of Deyang by RADARSAT-1 satel-
lite, before (Dec. 19, 2007) and after (May 14, 2008) the
devastating earthquake of May 12, 2008. Figure 6 shows
the registration result.

In conclusion, we investigate the spectral approaches to
the problem of point pattern matching. Firstly, we have
considered the rigid point-set alignment. PLS can be
effectively used for solving the rigid point correspondence
matching problem. The PLS components from both the
reference and sensed images are used as spectral descrip-
tors to establish their inner relationships. The spectral
descriptors indicate geometric distribution of keypoints
and are invariant to translation, scale, and rotation. Sec-
ondly, we have used robust methods for point correspon-
dences by the continuity constraint. Further work is
needed to obtain more robust results using more match-
ing keypoints to get better mapping approximations and
work with keypoint-sets of different sizes.
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